NOTES DIFFERENTIAL CALCULUS

THE CONCEPT OF A LIMIT

EXAMPLE 1

Determine the following limits:

(a)
$$\lim_{x \to 1} (2x^2 + 4)$$
 (b) $\lim_{x \to 2} \frac{x^2 - 4}{x + 1}$
= $(2(1)^2 + 4)$ = $\frac{(2)^2 - 4}{2 + 1}$
= 0

(c)
$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1}$$

In this example, it is first necessary to simplify the expression before determining the limit, as the denominator will be zero if x = 1 and division by zero is undefined.

$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1}$$

$$= \lim_{x \to 1} \frac{(x + 1)(x - 1)}{(x - 1)}$$

$$= \lim_{x \to 1} (x + 1)$$

$$= 1 + 1 = 2$$

Remember the following factorisation principles:

$$a^{2} - b^{2} = (a+b)(a-b) (b-a) = -(a-b)$$

$$a^{2} - 2ab + b^{2} = (a-b)^{2} a^{2} + 2ab + b^{2} = (a+b)^{2}$$

$$a^{3} - b^{3} = (a-b)(a^{2} + ab + b^{2}) a^{3} + b^{3} = (a+b)(a^{2} - ab + b^{2})$$

RULES OF DIFFERENTIATION

The following rules of differentiation are applicable for determining the gradient of a function given that the value of k is a constant.

Rule 1 If
$$f(x) = kx^n$$
, then $f'(x) = k nx^{n-1}$

Example:

If
$$f(x) = 8x^3$$
, then $f'(x) = 8 \times 3x^{3-1} = 24x^2$

Rule 2 If
$$f(x) = kx$$
, then $f'(x) = k$

Example:

If
$$f(x) = 9x$$
, then $f'(x) = 9$

Rule 3 If
$$f(x) = k$$
, then $f'(x) = 0$

Example:

If
$$f(x) = 9$$
, then $f'(x) = 0$

If f(x) = p (where p is a constant), then f'(x) = 0

Rule 1: Multiply out before you differentiate.

EXAMPLE 11

Determine the following:

(a)
$$f'(x)$$
 if $f(x) = (4x-3)^2$

Here we first need to expand and simplify so as to remove the brackets.

$$f(x) = (4x-3)^2$$

$$f(x) = 16x^2 - 24x + 9$$

$$f'(x) = 16 \times 2x^{2-1} - 24 + 0$$

$$f'(x) = 32x - 24$$

Rule 2: To get rid of the monomial in denominator, write each term over the denominator and simplify:

(c)
$$D_{x}\left[\frac{x^{2}-x-6}{2x^{2}}\right]$$

$$=D_{x}\left[\frac{x^{2}}{2x^{2}}-\frac{x}{2x^{2}}-\frac{6}{2x^{2}}\right]$$

$$=D_{x}\left[\frac{1}{2}-\frac{1}{2x}-\frac{3}{x^{2}}\right]$$

$$=D_{x}\left[\frac{1}{2}-\frac{1}{2}x^{-1}-3x^{-2}\right]$$

$$=0-\frac{1}{2}(-1)x^{-1-1}-3(-2)x^{-2-1}$$

$$=\frac{1}{2}x^{-2}+6x^{-3}$$

$$=\frac{1}{2x^{2}}+\frac{6}{x^{3}}$$

Rule 3: To get rid of the binomial in the denominator, factorise, simplify then differentiate.

(d)
$$D_{x} \left[\frac{3x^{3} - 7x^{2} - 6x}{3 - x} \right]$$

$$= D_{x} \left[\frac{x(3x^{2} - 7x - 6)}{3 - x} \right]$$

$$= D_{x} \left[\frac{x(3x + 2)(x - 3)}{3 - x} \right]$$

$$= D_{x} \left[\frac{x(3x + 2)(x - 3)}{-(x - 3)} \right]$$

$$= D_{x} \left[-x(3x + 2) \right]$$

$$= D_{x} \left[-3x^{2} - 2x \right]$$

$$= -6x - 2$$

RULE 4: Get rid of square and cube roots

(b)
$$\frac{dy}{dx}$$
 if $y = \frac{1}{2\sqrt[4]{x^3}}$

Here we need to first get rid of the divide line over the variable as well as the root sign.

$$y = \frac{1}{2\sqrt[4]{x^3}}$$

$$\therefore y - \frac{1}{2x^{\frac{3}{4}}}$$

$$(\sqrt[n]{a^m} - a^{\frac{m}{n}})$$

$$\therefore y = \frac{1}{2}x^{-\frac{1}{2}}$$

 $\therefore y = \frac{1}{2}x^{-\frac{3}{4}}$ (Exponential definition (c))

$$\therefore \frac{dy}{dx} = \frac{1}{2} \times -\frac{3}{4} x^{-\frac{3}{4}-1}$$
 (Rule 1)

$$\therefore \frac{dy}{dx} = -\frac{3}{8}x^{-\frac{7}{4}}$$

$$\therefore \frac{dy}{dx} = -\frac{3}{8x^{\frac{7}{4}}}$$

$$\therefore \frac{dy}{dx} = -\frac{3}{8\sqrt[4]{x^7}}$$

Determine:

Determine:		
(a) $f'(x)$ if $f(x) = 3x^6$	(a) $\frac{dy}{dx}$ if $y = 3x^6$	(a) $D_x \left[3x^6 \right]$
Rule 1:	Rule 1:	Rule 1:
$f(x) = 3x^6$	$y = 3x^6$	$D_x[3x^6]$
$\therefore f'(x) = 3 \times 6x^{6-1}$	$\therefore \frac{dy}{dx} = 3 \times 6x^{6-1}$	$= 3 \times 6x^{6-1}$
$\therefore f'(x) = 18x^5$	-	=18x ⁵
	$\therefore \frac{dy}{dx} = 18x^5$	-102
(b) $f'(x)$ if $f(x) = 10x$	(b) $\frac{dy}{dx}$ if $y = 10x$	(b) $D_x[10x]$
Rule 2:	Rule 2:	Rule 2:
f(x) = 10x	y = 10x	$D_x[10x]$
$\therefore f'(x) = 10$	$\therefore \frac{dy}{dx} = 10$	- 10
(c) $f'(x)$ if $f(x) = -8$	(c) $\frac{dy}{dx}$ if $y = -8$	(c) D _x [-8]
Rule 3:	Rule 3:	Rule 3:
f(x) = -8	y = -8	$D_x[-8]$
$\therefore f'(x) = 0$	$\therefore \frac{dy}{dx} = 0$	-0
(d) $f'(x)$ if $f(x) = m$	(d) $\frac{dy}{dx}$ if $y = m$	(d) D _X [m]
(m is a constant)	(m is a constant)	(m is a constant)
Rule 3:	Rule 3:	Rule 3:
f(x) = m	y = m	$D_{\chi}[m]$
$\therefore f'(x) = 0$	$\frac{dy}{dx} = 0$	-0
(e) $g'(x)$ if $g(x) = \frac{x^3}{3}$	(e) $\frac{dy}{dx}$ if $y = \frac{x^3}{3}$	(e) $D_x \left[\frac{x^3}{3} \right]$
$g(x) = \frac{x^3}{3}$	$y = \frac{x^3}{3}$	$D_x \left[\frac{x^3}{3} \right]$
First use exp def (a):	First use exp def (a):	
$\therefore g(x) = \frac{1}{3}x^3$	$\therefore y = \frac{1}{3}x^3$	$= D_x \left[\frac{1}{3} x^3 \right] $ exp def (a)
Now use Rule 1:	Now use Rule 1:	$=\frac{1}{3} \times 3x^{3-1}$ Rule 1
$\therefore g'(x) = \frac{1}{3} \times 3x^{3-1}$	$\therefore \frac{dy}{dx} = \frac{1}{3} \times 3x^{3-1}$	= x ²
$\therefore g'(x) = x^2$	$\therefore \frac{dy}{dx} = x^2$	

EXAMPLE 5

ŧ

Find, from first principles, the gradient of f(x) = 3x at any point.

Solution

We know that the graph of y = 3x is a straight line with a gradient of 3. By using first principles, we can verify this fact.

Step 1 Write down the formula for finding gradient from first principles:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Step 2 Write down the given f(x) and then determine f(x+h):

$$f(x) = 3x$$

$$\therefore f(x+h) = 3(x+h)$$

$$\therefore f(x+h) = 3x + 3h$$

Step 3 Substitute the expressions for f(x) and f(x+h) into the formula and then simplify the expression and evaluate the limit:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$\therefore f'(x) = \lim_{h \to 0} \frac{3x + 3h - 3x}{h}$$

$$\therefore f'(x) = \lim_{h \to 0} \frac{3h}{h}$$

$$\therefore f'(x) = \lim_{h \to 0} 3$$

$$\therefore f'(x) = 3$$

Hence the gradient of the line is 3.

EXAMPLE 7

- (a) Find, from first principles, the gradient of $f(x) = 1 3x^2$ at any point.
- (b) Hence find f'(-4), the derivative of f at x = -4.
- (c) What is the gradient of the tangent to f at x = 5?

Solution

(a) Step 1

Write down the formula for finding gradient from first principles:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Step 2

Write down the given f(x) and then determine f(x+h):

$$f(x) = 1 - 3x^2$$

$$\therefore f(x+h) = 1 - 3(x+h)^2$$

$$\therefore f(x+h) = 1 - 3(x^2 + 2xh + h^2)$$

$$\therefore f(x+h) = 1 - 3x^2 - 6xh - 3h^2$$

Step 3

Substitute the expressions for f(x) and f(x+h) into the formula and then simplify the expression and evaluate the limit:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$\therefore f'(x) = \lim_{h \to 0} \frac{(1 - 3x^2 - 6xh - 3h^2) - (1 - 3x^2)}{h}$$

$$\therefore f'(x) = \lim_{h \to 0} \frac{1 - 3x^2 - 6xh - 3h^2 - 1 + 3x^2}{h}$$

$$\therefore f'(x) = \lim_{h \to 0} \frac{-6xh - 3h^2}{h}$$

$$f'(x) = \lim_{h \to 0} \frac{h(-6x - 3h)}{h}$$

$$f'(x) = \lim_{h \to 0} (-6x - 3h)$$

$$f'(x) = -6x - 3(0)$$

$$f'(x) = -6x$$

- (b) Since f'(x) = -6x represents the gradient of the graph at any point on the graph, it is now easy to determine the gradient (derivative) at x = -4: f'(x) = -6x
 ∴ f'(-4) = -6(-4) = 24
- (c) The gradient of the tangent to the graph at x = 5 can now also be determined:

$$f'(x) = -6x$$

$$f'(5) = -6(5) = -30$$